Sunday, May 11, 2008

Global Change/Climate Change (part one)

The prediction of climate change due to human activities began with a prediction made by the Swedish chemist, Svante Arrhenius, in 1896. Arrhenius took note of the industrial revolution then getting underway and realized that the amount of carbon dioxide being released into the atmosphere was increasing. Moreover, he believed carbon dioxide concentrations would continue to increase as the world's consumption of fossil fuels, particularly coal, increased ever more rapidly. His understanding of the role of carbon dioxide in heating Earth, even at that early date, led him to predict that if atmospheric carbon dioxide doubled, Earth would become several degrees warmer. However, little attention was paid to what must have been seen to be a rather far-out prediction that had no apparent consequence for people living at that time.

Arrhenius was referring to a potential modification of what we now call the greenhouse effect. A simplified explanation of this is as follows (see the diagram). Shortwave solar radiation can pass through the clear atmosphere relatively unimpeded, but longwave infrared radiation emitted by the warm surface of the Earth is absorbed partially and then re-emitted by a number of trace gases--particularly water vapor and carbon dioxide--in the cooler atmosphere above. Because, on average, the outgoing infrared radiation balances the incoming solar radiation, both the atmosphere and the surface will be warmer than they would be without the greenhouse gases. One should distinguish between the "natural" and a possible "enhanced" greenhouse effect. The natural greenhouse effect causes the mean temperature of the Earth's surface to be about 33 degrees C warmer than it would be if natural greenhouse gases were not present. This is fortunate for the natural greenhouse effect creates a climate in which life can thrive and man can live under relatively benign conditions. Otherwise, the Earth would be a very frigid and inhospitable place. On the other hand, an enhanced greenhouse effect refers to the possible raising of the mean temperature of the Earth's surface above that occurring due to the natural greenhouse effect because of an increase in the concentrations of greenhouse gases due to human activities. Such a global warming would probably bring other, sometimes deleterious, changes in climate; for example, changes in precipitation, storm patterns, and the level of the oceans. The word "enhanced" is usually omitted, but it should not be forgotten in discussions of the greenhouse effect.

Nearly 100 years after the Arrhenius prediction, we are now aware that carbon dioxide in the atmosphere is increasing, with the likelihood that it will double by the middle of the next century from the levels at the time of Arrhenius. Post-World War II industrialization has caused a dramatic jump in the amount of carbon dioxide in the atmosphere. As the prospect of considerable change in the atmosphere becomes more real and threatening, new computer models are being applied to the problem. These models take into account the natural processes that must be part of the whole picture to understand what could happen to Earth's climate as carbon dioxide increases. An important aspect of the newer models is their treatment of the "amplifier" or feedback effect, in which further changes in the atmosphere occur in response to the warming initiated by the change in carbon dioxide.

In addition to moisture and cloud processes, the newer models are beginning to take into account the role of vegetation, forests, grasslands, and crops in controlling the amount of carbon dioxide that actually will be in the atmosphere. Along with their role as "sinks" for carbon dioxide, the various types of vegetation in the biosphere have further effects on climate. Plants heat or cool the air around them (through the reflection and absorption of solar radiation and the evaporation process), remove momentum from surface winds, and take up and release moisture into the air (thus contributing to alterations in the hydrologic cycle). In turn, changes in climate will affect the patterns of vegetation growth. For instance, forest stands that require relatively cool conditions may not be able to adjust to the relatively rapid warming that is being predicted for the interiors of climates. With slow warming, scientists expect that the northern edges of North American forests would creep slowly forward to more-favorable conditions, while the southern edges would give way to grasslands that are better suited to the warmer conditions. With overly rapid warming rates, however, the loss at the southern edge would be more extreme, and the migration at the northern edges would not be able to make up for the loss at the southern edge.

Other feedback effects at work also must be considered. In normal conditions, plant leaves take in carbon dioxide from the air and release moisture to the air as part of the photosynthesis process. The release of moisture through evapotranspiration causes the air to cool. With increasing atmospheric carbon dioxide, one can expect to see a change in plant carbon exchange rates and water relations. This may result in reduced evaporation rates, thus amplifying the summer continental warming. Without plants, the ground and air would become warmer, exacerbating the problem.

Original source : http://www.maui.net/~jstark/nasa.html

No comments: